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a b s t r a c t 

Background and objective: Radiologists often have a hard time classifying mammography mass lesions 

which leads to unnecessary breast biopsies to remove suspicions and this ends up adding exorbitant 

expenses to an already burdened patient and health care system. 

Methods: In this paper we developed a Computer-aided Diagnosis (CAD) system based on deep Convo- 

lutional Neural Networks (CNN) that aims to help the radiologist classify mammography mass lesions. 

Deep learning usually requires large datasets to train networks of a certain depth from scratch. Transfer 

learning is an effective method to deal with relatively small datasets as in the case of medical images, 

although it can be tricky as we can easily start overfitting. 

Results: In this work, we explore the importance of transfer learning and we experimentally determine 

the best fine-tuning strategy to adopt when training a CNN model. We were able to successfully fine-tune 

some of the recent, most powerful CNNs and achieved better results compared to other state-of-the-art 

methods which classified the same public datasets. For instance we achieved 97.35% accuracy and 0.98 

AUC on the DDSM database, 95.50% accuracy and 0.97 AUC on the INbreast database and 96.67% accuracy 

and 0.96 AUC on the BCDR database. Furthermore, after pre-processing and normalizing all the extracted 

Regions of Interest (ROIs) from the full mammograms, we merged all the datasets to build one large 

set of images and used it to fine-tune our CNNs. The CNN model which achieved the best results, a 

98.94% accuracy, was used as a baseline to build the Breast Cancer Screening Framework. To evaluate the 

proposed CAD system and its efficiency to classify new images, we tested it on an independent database 

(MIAS) and got 98.23% accuracy and 0.99 AUC. 

Conclusion: The results obtained demonstrate that the proposed framework is performant and can indeed 

be used to predict if the mass lesions are benign or malignant. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Breast cancer is one of the most common invasive diseases

mong women worldwide. In 2016, there were more than 2.8 mil-

ion women with a history of breast cancer in the U.S and this

ncludes women currently being treated and women who have

nished treatment. In 2017, 1,688,780 new cases of breast can-

er are expected to be diagnosed and 600,920 cancer deaths are

rojected to occur, though death rates have been decreasing since

989. These decreases are thought to be the result of treatment ad-

ances, increased awareness and earlier detection through screen-

ng [1] . Mammography is the recommended imaging modality for

reast cancer screening [2] , it is more useful as an early detec-

ion tool before the appearance of the physical symptoms. Early
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iagnosis of the disease via mammography screening increases the

hances of recovery dramatically [2] . However, the accuracy of the

iagnosis can be affected by the image quality or the radiologist’s

xpertise prone to errors. The average error rate among radiolo-

ists is around 30%, according to some studies [3,4] . In some recent

urveys [5] , error in diagnosis was the most common cause of lit-

gation against radiologists. The majority of such cases arose from

ailure to diagnose breast cancer on mammography [5] . To reduce

he rate of false-negative diagnoses, lesions with a 2% chance be-

ng malignant are recommended for a biopsy [6] . However, only

5–30% of the biopsies are found to be malignant [6] . As a result,

he unnecessary biopsies end up costing so much in terms of time,

oney or even discomforts that can occur for some patients due to

nxiety or panic attacks. It is therefore substantial to improve the

ccuracy of the radiologic diagnosis to increase the positive predic-

ive value of mammography. 

Computer-aided Diagnosis (CAD) systems aim at giving a sec-

nd objective opinion to assist the radiologist medical image in-

https://doi.org/10.1016/j.cmpb.2018.01.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2018.01.011&domain=pdf
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Fig. 1. Samples of mammography mass lesions; (a) benign; (b) malignant. 
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terpretation and diagnosis. CAD systems are especially used as ap-

plications that perform the labeling or differentiation between be-

nign and malignant lesions. In the last few years, deep learning

[7–10] especially through Convolutional Neural Networks (CNNs)

[11] has been proved to work very well in vision tasks. Some of

the recently proposed CAD systems adopted the renowned deep

learning techniques and obtained promising results [12–14] . The

deep learning CADs were introduced to different medical domains,

for example we can mention pulmonary Peri-fissural nodule clas-

sification [12] or Interstitial lung disease and Thoraco-abdominal

lymph node classification [14] and many others. We were particu-

larly interested in the works on breast lesions [15–18] . Most of the

proposed methods involved CNNs but in a traditional way, where

they use only the extracted CNN features or combine them with

some other hand-crafted descriptors to carry out the classification

task [17,18] . However, the most interesting aspect of using CNNs

is the end-to-end supervised learning process which does not rely

on complex engineered descriptors and instead uses the whole raw

image [11] . 

Convolutional Neural Networks learn discriminative features au-

tomatically, their architecture is particularly adapted to take advan-

tage of the 2D structure of the input image, but more importantly

one of their most impressive characteristic is that they generalize

surprisingly well to other recognition tasks [14,16] . In order to train

deep CNNs we need large annotated datasets which are lacking in

the medical domain especially for breast cancer. Moreover, train-

ing a CNN from scratch requires high computational power, large

memory resources and time, and with the little data provided we

can easily start overfitting. One way to overcome this is to use

transfer learning [19] from natural images (for example ImageNet

which has more than 1.2 million images categorized under 10 0 0

classes) and perform a fine-tuning as proposed in [14] . 

Transfer learning is commonly used in deep learning ap-

plications. It has been very effective in the medical domain

[13,14] when the amount of data is normally limited. Using trans-

fer learning from natural images to breast cancer mammography

images, has not yet been fully explored in the literature. And, as

far as we know the only work [16] which uses transfer learning to

classify breast lesions, employs small sized datasets and the deep

Convolutional Neural Network CNN-F [20] as a model. We propose

to perform the learning on different other datasets using some of

the recent, well-engineered and deepest CNN architectures. 

In this paper we exploit three of the most impressive CNN

models recently proposed VGG16, ResNet50 and Inception v3 [21–

23] trained on ImageNet [24] . We investigate the importance of

transfer learning instead of random initialization for each model,

and explore the impact of the number of fine-tuned layers on the

final results. Our primary aim is to make use of these state-of-

the-art CNNs, and perform a transfer learning from natural im-

ages to mammography images, in order to build a powerful mass

lesion classification tool which can assist the radiologist by giv-

ing him a “second-opinion” and help him make more accurate

diagnoses. 

The remainder of this paper is organized as follows:

Section 2 describes the proposed approach to classify breast

abnormalities into benign or malignant, in Section 3 we give

details of the experimentations lead to evaluate the proposed ap-

proach and we show the results. Section 4 gives a brief discussion

and finally Section 5 concludes the paper. 

2. Materials and methods 

2.1. Datasets 

We used three public databases to perform the learning and to

benchmark the deep learning architectures. We then merged all
hree datasets to boost the learning process, as it is known that

eep learning and other modern nonlinear machine learning tech-

iques get better with more data [25] . We will refer to this assem-

led database as the (Merged Dataset) MD dataset. 

DDSM [26] the Digital Database of Screening Mammography

DDSM) is publicly available and contains more than 2600 cases,

orted according to the degree of severity of the findings. Ev-

ry case in the DDSM contains four view mammograms from the

ame patient with associated ground truth and other information.

or example the patient’s age, the screening exam’s date, the ACR

i.e. American College of Radiology reporting system) breast den-

ity that was specified by an expert radiologist. Cases containing

uspicious regions are associated with a pixel level ground truth

arkings of the abnormalities. We were particularly interested in

he benign versus the malignant cases, so we used a subset of

329 cases containing a total of 5316 images, 641 cases of patients

ith benign mass lesions and 688 cases of patients with malignant

ass lesions. 

BCDR [27] the BCDR-F03 dataset from the Breast Cancer Digital

epository is a new dataset of film mammography composed by

36 biopsy-proven lesions of 344 patients. Each case includes clin-

cal data for each patient, and both Cranio-caudal (CC) and Medio-

ateral oblique (MLO) view mammograms, which are available to-

ether with the coordinates of the lesion’s contours. BCDR-F03 is

 binary class dataset composed of benign and malignant find-

ngs. We used a subset of 600 images from 300 patients, 300 im-

ges from 150 benign cases and 300 of images from 150 malignant

ases. 

INbreast [28] the INbreast database was built with full-field

igital mammograms (in opposition to digitized mammograms); it

s made publicly available together with precise annotations. It has

 total of 115 cases including MLO and CC views from each breast

ielding a total of 410 images. The database provides information

egarding the patient’s age at the time of image acquisition, fam-

ly history, ACR breast density annotation along with accurate con-

ours of the findings that were made by specialists. The INbreast

atabase presents a wide variability of cases which includes sev-

ral types of lesions (masses, calcifications, asymmetries, and dis-

ortions). We were interested in the benign and malignant cases,

o we assembled a subset of 50 cases including a total of 200 im-

ges, 100 images from 25 benign cases and 100 from malignant

ases. 

The Merged Dataset (MD) since deep CNNs perform better

hen used with large datasets, we combined all of the previous

atasets (i.e. DDSM, BCDR, INbreast) to build a new big dataset to

rain our CNN models. To get a balanced dataset, we pre-processed

nd normalized all the previously mentioned datasets, as we will

xplain in the next section, so that we could obtain one big ho-

ogenous database of targeted regions of interest from both cases

f patients with benign and malignant lesions ( Fig. 1 ). We obtained

 total of 6116 images from 1529 cases. 
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Fig. 2. Pre-processing of the mammograms; first row of the figure gives the example of a benign lesion and the second row a malignant lesion. (a) the original mammogram 

(b) illustration of the location and boundaries of the lesions annotated by imaging specialists (c) the cropped region of interest (d) the normalized ROI after applying Global 

Contrast Normalization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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.2. Methodology 

.2.1. Pre-processing 

In order to enhance the performance of a CAD system, pre-

rocessing is a mandatory step when building the dataset. In our

ork, we extracted the lesions as fixed sized ROIs then we nor-

alized them using global contrast normalization. Fig. 2 illustrates

he pre-processing steps for extracting and normalizing the ROIs. 

1) ROI extraction: We used the ground-truth provided with each

dataset to detect and crop the regions of interest (ROIs) from

the images. The location and boundaries of the lesions were

marked by imaging specialists. We used the provided coordi-

nates to target and crop the bounding box of the lesions au-

tomatically. We fixed the input size ROIs to r x r pixels. We

then rescaled the output image, for when the lesion is near the

edges and the width or height of the cropped ROI is smaller

than r. 

2) Global contrast normalization (GCN): Normalization, also

called zero-centering is a standard step in medical image clas-

sification. It attempts to deal with external sources of data vari-

ation like illumination levels, the different scanners used in the

digitalization process and how this can affect the pixel values.

Global contrast normalization computes the mean of intensities

for each image, and then subtracts it from each pixel of the im-

age. Let x i,j be the tensor of an image ( x ∈ R 

r x r ) and x̄ is the

mean of the x i,j image intensities x̄ = 

1 
r 2 

∑ 

i, j x i, j . 

The tensor of the normalized image is x ′ 
i, j 

= x i, j − x̄ . 

3) Data augmentation : Deep learning models perform better

when we have large datasets [25] . One very popular way to

make our datasets bigger is data augmentation or jittering. Data

augmentation can increase the size of the dataset to 10 times

the original one or more, which helps prevent overfitting when

training on very little data. The approach helps build simpler

and robust models which can generalize better [29] . To per-

form data augmentation, the simplest way is to add noise or
apply geometric transformation to existing data. Applying noise

and transformations to images of lesions makes sense since this

kind of data is very likely to be affected by all sort of noise and

can be found in different sizes and orientations. Hence, all the

transformations would boost the models to learn better. 

The images were “augmented” using a series of random trans-

ormations so that the models would never see twice the exact

ame image. We used width and height shifts with a fraction of

.25 from the total width or height of the image, a random rotation

ange of 0–40 °, a shear range of 0.5 and a zoom range between

0.5–1.5]. We also flipped the images horizontally and applied the

fill mode” strategy for filling in newly created pixels, which can

ppear after a rotation or a width/height shift. To carry out the

ugmentation, we instantiated the Keras [30] ImageDataGenerator

o generate batches of tensor image data with real-time data aug-

entation. 

.2.2. Deep Convolutional Neural Networks models 

In the last few years, CNNs demonstrated impressive perfor-

ance as they grew deeper and deeper; with the state-of-the-art

etworks going from 7 layers to 10 0 0 layers. In this paper, we use

ome of these state-of-art architectures, pre-trained on ImageNet,

or transfer learning from natural images to breast cancer images. 

VGG16 : There are several versions to the very deep convolu-

ional network (VGG) [21] published by researchers from Oxford

niversity, VGG16 is one of their best networks and is well known

or its simplicity. 

The architecture of this network is deep and simple, it mainly

onsists of an alternation between convolution layers and dropout

ayers. VGG was the first to use multiple small 3 × 3 filters in each

onvolutional layer and combine them in a sequence to emulate

he effect of larger receptive fields. Although the network is simple

n its architecture, it is very expensive in terms of memory and

omputational cost since the exponentially increasing kernels lead

o higher computational time and a bigger size model. 

The implemented VGG16 architecture is composed of 13 convo-

utional layers, 5 pooling layers and achieves 9.9% top-5 error on

mageNet. 
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Table 1 

Total number of layers of each model including the fully-connected layers added (5 dense layers added to each model). As well as the 

number of convolutional layers fine-tuned for the different fine-tuning strategies adopted. Note that, a dense layer or convolutional 

layer followed by a non-linearity is counted as one layer. 

Model Total number of layers Last 1 convolutional block Last 2 convolutional blocks Last 3 convolutional blocks 

VGG16 23 4 8 12 

ResNet50 179 12 22 34 

Inceptionv3 221 25 44 58 
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o  
ResNet50 : The ResNet50 is one of the models proposed in the

deep residual learning for image recognition [22] by the Microsoft

research team .The authors came up with a simple and elegant

idea. They take a standard deep CNN and add shortcut connections

that bypass few convolutional layers at a time. The shortcut con-

nections create residual blocks, where the output of the convolu-

tional layers is added to the block’s input tensor. For instance, the

ResNet50 model is composed of 50 layers of similar blocks with

shortcut connections. These connections keep the computation low

and at the same time provide rich combination features. 

The ResNet50 model used has one convolutional layer followed

by a batch normalization layer, and has two pooling layers in be-

tween which there is a total of 16 residual modules. Two kinds of

residual modules are alternated, one that has 4 convolutional lay-

ers and another with 3 convolutional layers and each convolutional

layer is followed by batch normalization. The residual block with 4

convolutional layers is the first one used, followed by at least two

or more residual blocks with 3 convolutional layers and so on. The

implemented ResNet50 model achieves a 7.8% top-5 error on Ima-

geNet. 

Inception v3 : The Google research team with Christian Szegedy

were mainly focused on reducing the computational burden of

CNNs while maintaining the same level of performance. They in-

troduced a new module named “The inception module" which, for

the most part, can be described as a 4 parallel pathways of 1 × 1,

3 × 3 and 5 × 5 convolution filters. And because of the parallel net-

work implementation, in addition to the down sampling layers in

each block, the model’s execution time beats VGG or ResNet. 

The research team proposed many models over the years which

are more and more complex, the Inception v3 [23] model was in-

troduced at about the same time as ResNet. The network was built

with some new designing principles for example the use of 3 × 3

convolutions instead of 5 × 5 or 7 × 7 in the inception modules,

also the expansion of width at each layer to increase the combina-

tion of features for the next layer, as well as the aim of construct-

ing a network with a computational budget balanced between its

depth and width. 

The Inception v3 we implemented has 5 convolutional layers

each one followed by a batch normalization layer, 2 pooling lay-

ers and 11 inception modules. The inception modules used contain

different numbers of paths and convolution layers. Authors of the

Inception v3 did not define an “Inception cell" and then repeatedly

applied it to downscale the input. Therefore, the inception mod-

ules used, sometimes consist of 4, 6, 7, 9 or 10 convolutional layers

followed by batch normalization and one pooling layer. The imple-

mented model by Chollet [30] achieves 7.8% as a top-5 error on

ImageNet, same as ResNet50. 

2.2.3. Transfer learning and fine-tuning 

As we begin to explore deep learning models from more spe-

cialized domains as the quantity of available data gets scarce. Even

though we have impressive training methods nowadays, training

deep learning models on small quantities of data is very difficult.

The actual paradigm used to deal with this issue has come through

the use of pre-trained neural networks [19] . 
Authors in [31] demonstrated that transfer of knowledge in net-

orks could be achieved by first training a neural network on a

omain for which there is a large amount of data, and then re-

raining that network on a related but different domain via fine-

uning its weights. [13,14] were able to show that transfer learning

an be beneficial even between two unrelated domains (natural vs.

edical). The advantage of using pre-trained models extends be-

ond the limited data issue, where it was proven to be an effective

nitialization technique for many complex models [32,33] 

We propose to investigate the adequacy of this technique for

ur case of study, either to deal with our little data or as a way

or initializing the models. Fig. 3 gives the schema for the models

etup. The CNN models are built differently but the same proce-

ure is applied to all of them: 

• For starters we kept the original networks architectures up till

the fully-connected layers. 
• The original fully-connected layers were built for the ImageNet

dataset with 10 0 0 outputs for 10 0 0 class categories. We re-

moved these last fully-connected layers and built our own fully-

connected model, on top of the convolutional part of the mod-

els, suited to our number of classes (i.e. 2 classes “Benign” and

“Malignant”). 

The new customized models (VGG16, ResNet50, Inception v3)

ill be used to train on the different datasets while adopting dif-

erent training strategies. We first conduct an ablation study where

e initialize our models randomly. Then, we use the models as

xed feature extractors and use the Softmax layer on top as a clas-

ifier. Finally, we adopt a fine-tuning strategy and study the impact

f the fraction fine-tuned on the final results ( Fig. 3 ). 

The first convolutional layers of a CNN learn generic features

nd can perform more like edge detectors, which should be use-

ul to many tasks, but the following layers become progressively

ore specific to the details of the classes contained in the dataset

34] . In accordance with this statement and since mammographic

ass lesion images are very different from ImageNet images, we

ropose to fine-tune our models to adjust the features of the last

onvolutional blocks and make them more data-specific; we fine-

une the weights of the pre-trained networks using the new set of

mages by resuming the backpropagation on the unfrozen layers. 

We propose a detailed study on the impact of the chosen frac-

ion of convolutional layers (unfrozen layers) to fine-tune, on the

nal results in the experimental section. Table 1 gives the num-

er of layers of each model and the number of layers we choose

o fine-tune, while the rest of the model is frozen for the dif-

erent fine-tuning strategies adopted (1 block, 2 blocks, 3 blocks

nd all the blocks). Since the models are very different a convolu-

ional block varies from one model to another as shown in Fig. 3 .

or VGG16 a convolutional block contains 3 convolutional opera-

ions followed by an activation and a pooling layer. In the case of

esNet50 the convolutional block is a residual block while for the

nception v3 it is an inception module. 

.2.4. Regularization and the choice of hyper-parameters 

Choosing the right parameters when fine-tuning is tricky. The

ptimization is done using Stochastic Gradient Descent (SGD)
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Fig. 3. Schema representing the different architectures and implementations of the models using transfer learning while adopting a fine-tuning strategy for some of the last 

convolutional blocks. The top part of the figure gives an overview of some of the layers composing each model; each layer is represented with a different color (keys in 

the bottom-right of the figure). The bottom-left part of the figure gives a detailed architecture of the customized fully-connected layers added to the bottom convolutional 

part of each model; note that the randomly turned-off activations in the dropout layer are represented with dotted circles. The three differently-colored dotted rectangular 

selections represent the different implementations of the models i.e. in each implementation the selected layers in the rectangle are fine-tuned while the rest of the model’s 

layers are frozen. 

{1FT = only one convolutional layer + the fully-connected part are fined-tuned while the rest of the layers are frozen; 

2FT = two convolutional layers + the fully-connected part are fined-tuned while the rest of the layers are frozen; 

3FT = three convolutional layer + the fully-connected part are fined-tuned while the rest of the layers are frozen; 

BN = batch-normalization}. 
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ather than and adaptive learning rate optimizer, to make sure the

agnitude of the learning rate stays small and not wreck the pre-

iously learned features [35] . 

When training the fully-connected model we used the adaptive

DAM optimizer [36] (Adaptive Moment Estimation). The method

s designed to combine the advantages of two recently popular

ethods: AdaGrad and RMSProp, it computes individual adaptive

earning rates for different parameters from estimates of first and

econd moments of the gradients. 

On the other hand, when fine-tuning we used the SGD opti-

izer with a small learning rate. We chose an initial learning rate

f 1e-4 and it was divided by 10 each time the validation error

topped improving. We also adopted an early stopping strategy to

onitor the validation loss with a patience set to 20 epochs i.e.

he number of epochs to wait for the accuracy to get better, before

topping, if no progress is noted on the validation set. 

Additionally, to improve the results and avoid overfitting, we

sed some tricks, for instance, we performed data augmentation,

2 regularization and dropout. 
a  

v  
To ensure that our model generalizes well, we used L2 regular-

zation (weight decay) to penalize large weights and prefer smaller

nes. The L2 regularization penalty operates on the weight matrix

 and is written as: R (W ) = 

∑ 

i 

∑ 

j W 

2 
i, j 

. 

The loss function then becomes: L = 

1 
N 

∑ N 
i =1 L i + λ R (W ) 

here λ is a hyper-parameter which controls the amount of the

egularization we are applying. We used λ= 1 as it gave the best

esults. 

Moreover, we added a dropout layer [37] so that it randomly

urns off the activations at training time with a probability of .5.

he randomly selected subset of activations are set to zero, which

revents some unit in one layer from relying too strongly on a sin-

le unit in the previous layer ( Fig. 3 ). 

.2.5. The Breast Cancer Screening Framework 

After fine-tuning the CNNs, we saved the weights of each model

n HDF5 format and the structure in a JSON format. The model

chieving the highest performance (see Table 2 ) i.e. the Inception

3 model trained on the merged database, which we will refer to
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Table 2 

Summary of the results obtained when fine-tuning the CNNs on the datasets. 

Dataset N of images Model Accuracy (%) Std (%) Time elapsed (Min) 

DDSM 5316 VGG16 97.12% ±0.30 271.8 

ResNet50 97.27% ±0.34 122.1 

Inception v3 97.35% ±0.80 91.6 

BCDR 600 VGG16 96.50% ±0.85 32.3 

ResNet50 96.50% ±2.30 17.6 

Inception v3 96.67% ±0.85 20.4 

INbreast 200 VGG16 95.00% ±0.50 15.9 

ResNet50 92.50% ±2.36 10.1 

Inception v3 95.50% ±2.00 14.3 

MD 6116 VGG16 98.64% ±0.22 326.3 

ResNet50 98.77% ±0.05 139.9 

Inception v3 98.94% ±0.22 64.7 
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as “Inceptionv 3-MD”, was used as a baseline to build the Breast

Cancer Screening Framework . 

To evaluate the performance of the Inceptionv 3-MD model, we

tested it on an independent database. Initially, we one-hot encoded

all of the database labels i.e. each label was represented by a vec-

tor p of size K = 2 corresponding to the number of output classes.

p is composed of the value 1 for the correct class and 0 for the

other class. 

Next, we fed the test images to the model and got the outputs

probabilities from the Softmax classifier: 

f i ( y ) = 

exp ( y i ) ∑ 

j exp 
(
y j 

)
The Softmax function gives normalized class probabilities for

the output being “Benign” or “Malignant”, the sum of these prob-

abilities adds up to 1. 

We could then measure the accuracy of the model by compar-

ing the two vectors: first the Softmax vector that comes out of

the classifier and contains the probabilities of the classes, and the

other one is the one-hot encoded label vector. 

To measure the distance between these two probability vectors,

we use the cross-entropy loss: 

L i = −log 

( 

exp ( f y i ) ∑ 

j exp 
(

f j 
)
) 

where f j is the j th element of the vector of class scores f . We de-

note the distance between the two vectors with D , the Softmax

function with f and the label vector with p . The cross-entropy be-

tween a “true” distribution p and an estimated distribution f is de-

fined as: 

D ( f, p ) = −
∑ 

i 
p i log( f i ) 

When the i th entry corresponds to the correct class p i = 1, the

cost (i.e., distance) becomes − log ( f i ) and when the i th entry corre-

sponds to the incorrect class, p i = 0, the entry in f i becomes irrel-

evant for the cost. 

To further evaluate the general applicability of the model, we

built a user-friendly interface based on the Inceptionv 3-MD to

classify new images. 

We used python and Tkinter to create the GUI (Graphic User

Interface) and Keras [30] with Theano [38] to manage the model.

The framework takes an image as an input, and gives as an output

the predicted class label to be displayed as an output ( Fig. 4 ). 

3. Experimental results 

The extracted ROIs were of size r × r ( r = 300), we rescaled

them to be 224 × 224, so that they can be compatible with the

original size of images from ImageNet which were used to train

the original CNNs. 
We train and evaluate the CNNs using a stratified 5-fold

ross validation. The mean accuracy, standard deviation and time

lapsed for training each model is reported and are used for com-

aring the different setups. 

First, we investigate the extent that has transfer learning,

hrough the use of pre-trained weights as an initialization for the

NNs, over training the models from scratch with a random ini-

ialization ( Fig. 5 ). We use the pre-trained models as fixed features

xtractors and the Softmax layer on top as a classifier; we call this

 0 fine-tuning strategy ( Fig. 6 ). Finally, we carry out an experi-

entation to find out the optimal number of layers we need to

ne-tune for each model in order to get the best performance. We

est with fine-tuning one, two, three and all of the convolutional

locks of our models and we examine their performance on DDSM,

CDR and INbreast databases. The blocks were fine-tuned for 90

pochs with a batch size of 128 images. We used the Keras library

30] with Theano [38] as a backend and the Cuda enabled GPU

Vidia GTX 980 M. 

.1. Random initialization vs. transfer learning 

On the one hand, we randomly initialize all our models and

rain them on the datasets and on the other we use the pre-trained

odels as an initialization for our models. Fig. 5 gives the results

rom the comparison between the two different setups trained on

DSM, BCDR and INbreast. 

Random initialization merely samples each weight from a stan-

ard distribution with a low deviation. The idea is to pick weight

alues at random following a distribution which would help the

ptimization process to converge to a meaningful solution. 

The networks weights were initialized to a small random num-

er generated from a Gaussian distribution, in our case the values

ere between 0 and 0.05. The low deviation allows to bias the net-

ork towards a simple 0 solution, without the bad repercussions

f actually initializing the weights to 0 [35] . 

As an alternative, we perform transfer learning through the use

f pre-trained weights, obtained from the CNNs training on Ima-

eNet, as an initialization for our networks weights. In Fig. 5 we

ompare random initialization versus the transfer learning strategy

0 fine-tuning). 

The 0 fine-tuning strategy which we can also refer to as the fea-

ure extraction mechanism is the basic way of doing transfer learn-

ng. We first remove the classification part of the networks (i.e. the

ully-connected layers) which was responsible for giving the prob-

bilities of an image as being from each of the 10 0 0 classes in Im-

geNet. Then, we use the remaining part of the models as a fixed

eature extractor that computes the CNN codes of each image from

ur datasets. We finally use a Softmax classifier to train on the ob-

ained high-dimensional CNN codes (i.e. feature vectors). 
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Fig. 4. Screenshots of the obtained result from our Breast Cancer Screening Framework based on the Inception v3-MD model; Case of an image containing a suspected 

malignant mass lesion. 

Fig. 5. Randomly initialized weights vs. pre-trained weights. 

 

e  

t  

f  

t  

t  

c  

o  

v  

r

3

 

p  

fi

 

f  

t  

e

 

fi  

w  

t  

t  

fi

 

w  

c  

m  

t

 

e  

v  

p

 

o  

w  

w  

n

 

f  

t  

t  

n  

m

Fig. 5 gives the comparison summary of the performance of

ach network with the two initialization methods while trained on

he same dataset. We can see that the pre-trained models outper-

ormed randomly initialized models each time. The assumption is

hat it is beneficial to initialize the CNNs with weights from a pre-

rained model since the pre-trained weights may already be good

ompared to randomly initialized weights. A pre-trained network

n a large and diverse dataset like ImageNet learns to capture uni-

ersal features like lines and edges in its early layers which can be

elevant and useful to most classification problems. 

.2. Fine-tuning: How many layers are too many layers? 

The nature of our data which is very different in content com-

ared to the original dataset (ImageNet) allowed us to adopt a

ne-tuning strategy. 

We loaded the initialization weights of the models [29] ; we

roze the layers of the bottom architecture and trained the cos-

umed fully-connected model on top with each dataset for 30

pochs. 

Training the new fully-connected model before performing the

ne-tuning is important, in order to start with properly trained

eights and not wreck the learned convolutional base. Experimen-

al results showed an improvement of 5% to 10% when training

he newly added fully-connected layers before proceeding with the

ne-tuning. 

We investigated the optimal number of layers to fine-tune that

ould give us the best performance. Fig. 3 illustrates how we

hanged the number of frozen and unfrozen layers each time to

easure the effect that has the number of layers fine-tuned on

he results. 

For instance, in the 1 fine-tuning (1FT), we froze all the lay-

rs until the last convolutional block. We unfroze the last con-

olutional block plus the fully-connected block by resuming back-

ropagation on them with a small learning rate (1e-4). 

For the 2 fine-tuning (2FT) we unfroze two blocks instead of

ne and for 3 fine-tuning, three blocks (3FT). The All fine-tuning is

hen we unfroze all the layers and changed the values of all the

eights of the models while back-propagating through the whole

etwork. 

Fig. 6 gives the accuracy results for fine-tuning the different

ractions of the models while using the datasets. We can see that

he accuracy increased when we went from 0 fine-tuning to 1 fine-

uning then from 1 fine-tuning to 2 fine-tuning. However, once the

umber of convolutional blocks exceeded two (i.e. 3 blocks and

ore) the accuracy started dropping. 



26 H. Chougrad et al. / Computer Methods and Programs in Biomedicine 157 (2018) 19–30 

Fig. 6. Comparison of the results obtained using different fine-tuning strategies {0, 

1, 2, 3, All} for transfer learning with our models while using our datasets (DDSM, 

BCDR, INbreast). 
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We can also see that 2 fine-tuning (2FT) is the clear choice

when it comes to the optimal number of convolutional blocks we

fine-tune. The assumption here is that while using the pre-trained

weights is the better option, the last layers of the models learn

more data specific features which in our case are very different

from our type of data. Therefore, resuming back-propagation on

the last convolutional layers may lead to a better performance as

we’ll start learning features that are more suited to our set of data.

Yet, fine-tuning too many layers leads to worse results. Perhaps,

with the deep architectures and the small datasets used, the mod-

els started overfitting by learning irrelevant features due to their

large entropic capacity. And it is showing in Fig. 3 for the INbreast

database (which is the smallest one in our case of study) where

we got an accuracy close to 50% for our test sets while fine-tuning

all layers of VGG16 and ResNet50. 

The idea here is that we need to make the last convolutional

layers learn more data-specific features but there is no need for

us to disturb the first convolutional layers as they’re already well

tuned to learn generic features especially if we don’t have enough

data to train on. 
.3. Classification results of the best CNN models implementations 

Transfer learning using pre-trained weights from ImageNet

hile adopting a 2 fine-tuning strategy (2FT) is clearly the best

etup for all our CNNs. 

We use this implementation of our models to train on the

atasets. Additionally, we train the CNNs also on the merged

ataset (MD) and we compute the mean accuracy, standard devia-

ion and time elapsed for each case. 

Table 2 reports the performance and results of each model

hen fine-tuned on the different datasets. 

We can see that all of the CNNs achieve good accuracy rates,

ut the Inception v3 model outperforms them all and over all the

atasets. As it has already been shown in Table 1 , we notice that

he Inception v3 model is also the deepest network among the oth-

rs. As a matter of fact, the network’s depth affects its performance

y making the learning easier. The advantage is that multiple lay-

rs makes it possible to learn features at various levels of abstrac-

ion, so that global features are progressively learned as combina-

ions of local features along the depth of the network. When it

omes to the computational time Inception v3 and ResNet50 are

oth much faster than VGG16. Although both networks are deeper

han the latter, but still they have lower complexity, as they are

ot stacked up sequentially. On the other hand, we can clearly

ee that the size of data used to re-train the networks affects the

esults ( Table 2 ), as it is well known that CNNs perform better

hen trained on larger sets of images. The results obtained on the

erged dataset (MD) confirm that deep learning networks gener-

lize better when provided with more data. The performance of

he networks on the test set from INbreast compared to a larger

ataset for example DDSM or MD shows that while the architec-

ure and depth of the CNN model used is important, what is more

mportant is the quality and quantity of the training data. 

.4. Monitoring the performance of our models 

Due to the small number of training examples we have, com-

ared to the thousands of images from ImageNet used to train the

riginal model, we had to prevent the models from overfitting. 

We performed data augmentation but it was not enough, be-

ause the augmented samples were still highly correlated. To rem-

dy this, we forced the weights of the models to take smaller val-

es by applying an L2 regularization and added a dropout layer. 

Consequently, we needed to monitor the performance of each

odel as we do not want our models to start learning too-well, to

he point that they cannot perform as well on never seen data. 

Initially, we used a train/test random split with 80% of the data

or training/validation and 20% for testing. We used the validation

et to monitor and tune the hyper-parameters of each model as

t trains. Fig. 7 illustrates the plots of accuracy and loss over the

pochs for the Inception v3 model trained on the merged database

“Inceptionv 3-MD” model). As shown in Fig. 7 , the validation set

as checked during training to monitor progress, and to possibly

educe the learning rate when it reaches a plateau or to force an

arly stopping. The test set was then used as hold-out set to mea-

ure the model’s performance on never-seen data. 

After tuning the models and optimizing all of the hyper-

arameters. We used the best setup for each CNN to train one final

odel on all the data using a stratified 5-fold cross validation. We

aved the obtained finalized model for a later use or for making

redictions on new data. 

Stratified cross validation gives a less biased estimate of the

odel’s skill on unseen data while it attempts to balance the num-

er of instances of each class in each fold, to ensure that each fold

s a good representative of the whole. For each dataset we create

nd evaluate multiple models on multiple subsets of the dataset.
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Fig. 7. The plot of accuracy and loss over the epochs for the Inception v3 model trained on the merged dataset (Inception v3-MD); the plots help in tuning the model and 

its hyper-parameters while monitoring its performance on the train and validation sets. 
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Fig. 8. Receiver Operating Characteristic (ROC) of the classification of MIAS using 

the Inception v3-MD model. 

Table 3 

Comparison summary of our approach with others in the lit- 

erature. 

Authors and date Database Accuracy AUC 

W. Peng et al. 2015 MIAS 96% –

G. Carneiro et al. 2015 DDSM – 0.97 

INbreast – 0.91 

J. Arevalo et al. 2015 BCDR – 0.826 

Z. Jiao et al. 2016 DDSM 96.7% –

Ours MIAS 98.23% 0.99 

DDSM 97.35% 0.98 

INbreast 95.50% 0.97 

BCDR 96.67% 0.96 

a  

m  

t  

t  

o

 

t  
he reported mean and standard deviation at the end provide a

obust estimate of the model’s performance (see Table 2 ). 

.5. Testing the Inceptionv 3-MD on MIAS 

The Mammographic Image Analysis Society (MIAS) [39] is a

ommonly used database. It contains 322 digitized film mammo-

rams and includes radiologist’s ground-truth markings on the lo-

ations of the suspected lesions. The MIAS data is classified using

arious criteria, we chose the images that were classified accord-

ng the severity of the abnormality criteria so the mammograms

ot showing masses (Normal) were removed from the dataset and

e kept only the mammograms with benign and malignant lesions

hich formed a subset of 113 images. 

The subset contained images that were not previously seen by

ur CNN so it was used as a test set. We used the same pre-

rocessing steps on the new images. The Inceptionv 3-MD was

oaded and compiled to perform the classification. We measured

he performance on this set using the overall accuracy, the Re-

eiver Operating Characteristic curve (ROC) and the Area Under the

urve (AUC) metrics as they are the most adopted measures when

t comes to evaluating classification systems. 

Fig. 8 gives the ROC curve for the classification of the MIAS

atabase using the pre-trained Inceptionv 3-MD model. The plot

f the true positive rate against the false positive rate follows the

eft-hand border and then the top border of the ROC space, which

ndicates that the results are indeed accurate. Moreover, the model

chieves an accuracy of 98.23% and AUC of 0.99 which indicates

hat the Breast Cancer Screening Framework is robust and can be

rusted to classify new data. 

.6. Comparison summary of our work with others 

Table 3 gives a comparison summary of some of the works that

sed CNNs for the classification of the datasets we used. 

For instance, we have the work of Carneiro et al. [16] in which

hey first trained a separate CNN model for each view of the breast

MLO and CC). Then they used the features learned from each

odel to train a final CNN classifier which estimates if the case

s benign or malignant. The authors tested their approach on the

wo publicly available datasets DDSM and INbreast and achieved

n AUC of 0.97 and 0.91 respectively, while we achieved an AUC of

.98 and 0.97. Jiao et al. [18] also classified DDSM database using
 deep feature based framework which combined intensity infor-

ation and deep features extracted from a trained CNN to predict

he category of the test images. They used the accuracy measure

o evaluate the performance of their approach and achieved 96.7%

n DDSM while we achieved 97.35%. 

Besides, Arevalo et al. [17] adopted a hybrid approach where

hey used a CNN to learn the representation of the mammog-
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raphy images in a supervised way, and then combined the ob-

tained features with hand-crafted descriptors to classify mass le-

sions from the BCDR database. They achieved an AUC of 0.826 and

we achieved 0.96 on the same dataset. 

To evaluate the performance of our proposed Breast Cancer

Screening Framework we used the MIAS dataset, we calculated both

the AUC and the overall classification accuracy of the test images

and got 0.99 and 98.23% respectively. In contrast, an evaluation of

the same dataset by Peng et al. [15] while using ANN (Artificial

Neural Networks) with texture features extracted from the images

resulted in a 96% accuracy. 

4. Discussion 

To build an end-to-end powerful classification tool for breast

cancer screening, we explored various setups and approaches. 

First, we investigated the extent that has transfer learning over

random initialization. We tested the performance of all our net-

works with the two approaches while training on three public

datasets. The results demonstrated that initialization with pre-

trained weights is advantageous, and that it may be due to the

fact that the weights are already familiar with some universal fea-

tures and patterns that were learned from ImageNet as opposed to

random weights. 

We then examined the possible ways of doing transfer learning.

We adopted a “0 fine-tuning” strategy where we used the CNNs

as feature extractors then classified the resulting CNN codes us-

ing a Softmax classifier. Afterwards, we started unfreezing the last

convolutional blocks one by one until 3 blocks where the accu-

racy started to drop. For the purpose of the experiment, we further

pushed the fine-tuning strategy to the extreme by fine-tuning all of

the CNNs layers and we evaluated the performance in each case.

The results indicated that while fine-tuning is beneficial and can

lead to a better performance (i.e. if we compare “0 fine-tuning” to

1 fine-tuning and “1 fine-tuning” to “2 fine-tuning”), but too much

fine-tuning, as for example the “All fine-tuning” strategy, leads to

worse results. We found out that the optimal number of blocks to

fine-tune was 2 convolutional blocks. This enabled us to keep the

first layers which learn generic features and fine-tune only the last

layers to make them learn more data-specific features. 

Transfer learning and fine-tuning allowed us to use the learned

ImageNet weights of different deep learning models as an initial-

ization to our CNNs, and fine-tune them so as they can differenti-

ate malignant breast mass lesions from benign ones. 

The obtained results show a clear improvement over other pro-

posed methods. Many of the works which classified mammogra-

phy mass lesions employed simple neural networks, shallow Con-

volutional Neural Networks (i.e. not deep enough) or the combina-

tion of extracted CNN features with other hand-crafted descriptors.

However, the most interesting aspect of CNNs is the end-to-end

learning, leading to a better performance while using less complex

algorithms. The better performance comes from the fact that the

internal components self-optimize to maximize the overall system

performance. And Compared to the traditional neural networks,

CNNs reduce the computational cost as they have fewer parame-

ters and are easier to train. 

When comparing the obtained results of each CNN fine-tuned

on the different datasets, we noticed that the depth of the model

as well as its architecture affects its performance. The best re-

sults for each dataset were obtained using the Inception v3 model,

which also happens to be the deepest network among the others.

The Inception v3 seems to be more suited for fine-tuning, maybe

it is because of its architecture which is deep but not stacked up,

making it less sensitive to the vanishing gradient problem. As a

result, fine-tuning the pre-trained Inception v3 model enabled us

to achieve a better performance compared to the state-of-the-art
ethods which classified the same public datasets we used, and

his in terms of both accuracy and AUC metrics. 

Intensity normalization is an important preprocessing step in

edical imaging. During image acquisition, different scanners and

arameters are used for scanning the different patients or even the

ame patient sometimes, which may result in large intensity vari-

tions. Those variations can be more flagrant from one set of data

o another (different illumination conditions, materials, expert in

harge…etc.). This intensity variation can greatly undermine the

erformance of the proposed system for mammography analysis.

ubsequently, before using the images and especially before merg-

ng all datasets, we used GCN normalization to reduce the inten-

ity variation between images, which may have been taken under

ifferent conditions. The normalization helps phase out the inten-

ity variations caused by the various lighting conditions. So, that

e can effectively reduce intra-variations between images from the

ame dataset and inter-variations between images from different

atasets. 

To perform the transfer learning, we used datasets of different

izes and the results obtained indicated the existence of a corre-

ation between the number of training data and the performance

f the models. Thus, we combined all datasets to build one large

et of images. The merged dataset was used to fine-tune the net-

orks. Assuredly, the Inception v3 model outperformed the other

etworks using this set of data as it achieved 98.94% accuracy. 

A deep CNN composed of many layers trained on a small

ataset should have a large entropic capacity. The model is then

ble to store a lot of information, which gives it the potential to

e highly accurate by exploiting more features. However, it can

lso make it more at risk of storing irrelevant features. To mod-

late the entropic capacity of our models, we had to first en-

arge our datasets through data augmentation. Then, we only fine-

uned the last two convolutional layers of the models to get more

ataset-specific features. In addition, we applied L2 regularization

nd dropout to disrupt complex co-adaptations on training data,

nd so we made the models focus on the more significant fea-

ures from the images, for a better generalization. Furthermore, all

he models were meticulously monitored to examine their perfor-

ance on the training data and the validation data in order to op-

imize the hyper-parameters and select the best model. The latter

as then used to assess both training and test sets simultaneously,

o ensure that the model is not overfitting and that it performs

qually well on never-seen data (the test data). 

After tuning the models and choosing the best hyper-

arameters, we trained one final model for each CNN using a strat-

fied 5-fold cross-validation with all the data and we computed the

ean accuracy, standard deviation and time elapsed for each ex-

eriment to evaluate the performance. 

We used the Inception v3 model fine-tuned on the merged

ataset to develop a powerful classification tool. The Breast Cancer

creening Framework can be used as a Computer-aided Diagnosis

ystem that classifies mammography mass lesions. To evaluate the

ramework, we tested it using new images from the MIAS database,

nd we achieved an area under the curve (AUC) of 0.99. The results

btained outperform by a large margin human performance, with

adiologists achieving a 0.82 AUC according to [40] . 

The developed framework could predict and provide the cor-

ect diagnosis for 98.23% of the images from MIAS, 97.35% from

DSM 95.50% for INbreast and 96.67% for BCDR. The results ob-

ained from the receiver operating characteristic (ROC) curve anal-

sis showed a high true-positive rate for all previous datasets,

hich means a high probability of correctly identifying malignant

ass lesions as being cancerous. 

Fig. 9 illustrates some examples of images that were misclassi-

ed (red frames) versus others that were correctly classified (green

rames). 
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Fig. 9. Examples of regions of interest containing mass lesions; the first row contains benign lesions and the second row contains malignant lesions; the misclassified 

images are framed by a red bounding box (the 3 images on the left in both rows) and the correctly classified by a green one (the 3 images on the right in both rows). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Examining the misclassified images we can see that the texture

f some of the benign and malignant images is similar. One possi-

ility is that this is due to high breast density. 

It is well known that cancer is more difficult to detect, in mam-

ograms of women with radiographically dense breasts [41] . 

Breasts are made up of lobules, ducts, and fatty and fibrous con-

ective tissue. The breasts are dense in the presence of a lot of

landular tissue and not much fat. On mammograms, dense breast

issue looks white. Breast masses or tumors also look white, hence,

he dense tissue can hide tumors. On the other hand, fatty tissue

ooks almost black. On a black background it is easier to identify

 tumor that looks white ( Fig. 9 ). Therefore, mammograms can be

ess accurate in women with dense breasts. 

This suggests that we can further improve our framework, if

e were to carefully select the images to train on and give the

odel more challenging examples to learn from. We can also in-

lude additional imaging techniques in the learning process, such

s Breast Ultrasound or breast MRI (Magnetic Resonance Imaging),

o help get a clearer view of the breast, especially for cases with

igh breast density [42,43] . 

. Conclusions 

In summary, we can conclude that integrating the recent well-

ngineered deep learning CNNs through transfer learning into the

creening mechanism brings an apparent improvement compared

o other approaches. The fine-tuning strategy proposed improves

he state-of-the-art accuracy classification on many public datasets.

he Inception v3 model trained on the merged dataset, which

chieved the best accuracy rate overall, was used to develop a

ass lesion classification tool. The Breast Cancer Screening Frame-

ork devised, could successfully classify many "never-seen" images

f mammography mass lesions. It provided highly accurate diag-

oses when distinguishing benign from malignant lesions. There-

ore, its output could be used as a "second opinion" to assist the

adiologist in giving more accurate diagnoses. 

Our future work includes using deeper architectures as well as

ore challenging images to deal with the hindrance caused by

ammograms of highly dense breasts. Besides, we suppose that it

an also be beneficial to incorporate other imaging techniques in

ombination with mammography, in the learning process, to help

uild a robust and powerful breast mass lesion classification tool. 
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